Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 15: 1282925, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38567303

RESUMO

Background: Encapsulating peritoneal sclerosis (EPS) is a rare complication of prolonged peritoneal dialysis (PD) exposure, characterised by peritoneal thickening, calcification, and fibrosis ultimately presenting with life-threatening bowel obstruction. The presence or role of peritoneal calcification in the pathogenesis of EPS is poorly characterised. We hypothesise that significantly aberrant bone mineral metabolism in patients on PD can cause peritoneal calcification which may trigger the development of EPS. We compared the temporal evolution of bone mineral markers during PD in EPS patients with non-EPS long-term PD controls. Methods: Linear mixed model and logistic regression analysis were used to compare four-monthly serum levels of calcium, phosphate, parathyroid hormone, and alkaline phosphatase (ALP) over the duration of PD exposure in 46 EPS and 46 controls (PD, non-EPS) patients. Results: EPS patients had higher mean calcium (2.51 vs. 2.41 mmol/L) and ALP (248.00 vs. 111.13 IU/L) levels compared with controls (p=0.01 and p<0.001 respectively, maximum likelihood estimation). Logistic regression analysis demonstrated that high serum calcium and phosphate levels during PD were associated with a 4.5 and 2.9 fold increase in the risk of developing EPS respectively. Conclusion: High levels of calcium and phosphate in patients on PD were identified to be risk factors for EPS development. Possible reasons for this may be an imbalance of pro-calcifying factors and calcification inhibitors promoting peritoneal calcification which increases peritoneal stiffness. Mechanical alterations may trigger, unregulated fibrosis and subsequent development of EPS. Improved management of secondary hyperparathyroidism during PD may ultimately diminish the EPS risk.


Assuntos
Calcinose , Hiperparatireoidismo , Fibrose Peritoneal , Humanos , Fibrose Peritoneal/etiologia , Cálcio , Fatores de Risco , Calcinose/etiologia , Minerais , Fosfatos
2.
Front Immunol ; 13: 1000491, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275765

RESUMO

Peritoneal adhesions commonly occur after abdominal or pelvic surgery. These scars join internal organs to each other or to the cavity wall and can present with abdominal or pelvic pain, and bowel obstruction or female infertility. The mechanisms underlying adhesion formation remain unclear and thus, effective treatments are not forthcoming. Peritoneal macrophages accumulate after surgery and previous studies have attributed either pro- or anti-scarring properties to these cells. We propose that there are complex and nuanced responses after surgery with respect to both resident and also monocyte-derived peritoneal macrophage subpopulations. Moreover, we contend that differences in responses of specific macrophage subpopulations in part explain the risk of developing peritoneal scars. We characterized alterations in peritoneal macrophage subpopulations after surgery-induced injury using two strains of mice, BALB/c and C57BL/6, with known differences in macrophage response post-infection. At 14 days post-surgery, BALB/c mice displayed more adhesions compared with C57BL/6 mice. This increase in scarring correlated with a lower influx of monocyte-derived macrophages at day 3 post-surgery. Moreover, BALB/c mice showed distinct macrophage repopulation dynamics after surgery. To confirm a role for monocyte-derived macrophages, we used Ccr2-deficient mice as well as antibody-mediated depletion of CCR2 expressing cells during initial stages of adhesion formation. Both Ccr2-deficient and CCR2-depleted mice showed a significant increase in adhesion formation associated with the loss of peritoneal monocyte influx. These findings revealed an important protective role for monocyte-derived cells in reducing adhesion formation after surgery.


Assuntos
Macrófagos Peritoneais , Monócitos , Camundongos , Feminino , Animais , Camundongos Endogâmicos C57BL , Monócitos/patologia , Cicatriz/patologia , Macrófagos/patologia , Aderências Teciduais , Receptores de Quimiocinas , Camundongos Endogâmicos BALB C
3.
Front Immunol ; 12: 715209, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34386014

RESUMO

Peritoneal dialysis (PD) is a more continuous alternative to haemodialysis, for patients with chronic kidney disease, with considerable initial benefits for survival, patient independence and healthcare costs. However, long-term PD is associated with significant pathology, negating the positive effects over haemodialysis. Importantly, peritonitis and activation of macrophages is closely associated with disease progression and treatment failure. However, recent advances in macrophage biology suggest opposite functions for macrophages of different cellular origins. While monocyte-derived macrophages promote disease progression in some models of fibrosis, tissue resident macrophages have rather been associated with protective roles. Thus, we aimed to identify the relative contribution of tissue resident macrophages to PD induced inflammation in mice. Unexpectedly, we found an incremental loss of homeostatic characteristics, anti-inflammatory and efferocytic functionality in peritoneal resident macrophages, accompanied by enhanced inflammatory responses to external stimuli. Moreover, presence of glucose degradation products within the dialysis fluid led to markedly enhanced inflammation and almost complete disappearance of tissue resident cells. Thus, alterations in tissue resident macrophages may render long-term PD patients sensitive to developing peritonitis and consequently fibrosis/sclerosis.


Assuntos
Soluções para Diálise , Ativação de Macrófagos/imunologia , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Diálise Peritoneal , Animais , Plasticidade Celular , Feminino , Fibrose , Glucose/metabolismo , Imunofenotipagem , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Diálise Peritoneal/efeitos adversos , Diálise Peritoneal/métodos , Fenótipo
4.
J Fungi (Basel) ; 7(6)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200666

RESUMO

Aspergillus fumigatus is an important human respiratory mould pathogen. In addition to a barrier function, airway epithelium elicits a robust defence against inhaled A. fumigatus by initiating an immune response. The manner by which A. fumigatus initiates this response and the reasons for the immunological heterogeneity with different isolates are unclear. Both direct fungal cell wall-epithelial cell interaction and secretion of soluble proteases have been proposed as possible mechanisms. Our aim was to determine the contribution of fungal proteases to the induction of epithelial IL-6 and IL-8 in response to different A. fumigatus isolates. Airway epithelial cells were exposed to conidia from a low or high protease-producing strain of A. fumigatus, and IL-6 and IL-8 gene expression and protein production were quantified. The role of proteases in cytokine production was further determined using specific protease inhibitors. The proinflammatory cytokine response correlated with conidia germination and hyphal extension. IL-8 induction was significantly reduced in the presence of matrix metalloprotease or cysteine protease inhibitors. With a high protease-producing strain of A. fumigatus, IL-6 release was metalloprotease dependent. Dectin-1 antagonism also inhibited the production of both cytokines. In conclusion, A. fumigatus-secreted proteases mediate a proinflammatory response by airway epithelial cells in a strain-dependent manner.

5.
Biomolecules ; 11(5)2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-34063089

RESUMO

Post-surgical adhesions are internal scar tissue and a major health and economic burden. Adhesions affect and involve the peritoneal lining of the abdominal cavity, which consists of a continuous mesothelial covering of the cavity wall and majority of internal organs. Our understanding of the full pathophysiology of adhesion formation is limited by the fact that the mechanisms regulating normal serosal repair and regeneration of the mesothelial layer are still being elucidated. Emerging evidence suggests that mesothelial cells do not simply form a passive barrier but perform a wide range of important regulatory functions including maintaining a healthy peritoneal homeostasis as well as orchestrating events leading to normal repair or pathological outcomes following injury. Here, we summarise recent advances in our understanding of serosal repair and adhesion formation with an emphasis on molecular mechanisms and novel gene expression signatures associated with these processes. We discuss changes in mesothelial biomolecular marker expression during peritoneal development, which may help, in part, to explain findings in adults from lineage tracing studies using experimental adhesion models. Lastly, we highlight examples of where local tissue specialisation may determine a particular response of peritoneal cells to injury.


Assuntos
Redes Reguladoras de Genes , Peritônio/cirurgia , Aderências Teciduais/genética , Regulação da Expressão Gênica no Desenvolvimento , Marcadores Genéticos , Humanos , Peritônio/crescimento & desenvolvimento , Aderências Teciduais/etiologia
7.
J Surg Res ; 247: 202-210, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31753555

RESUMO

BACKGROUND: Implants used in abdominal wall reconstruction are associated with intra-abdominal inflammation that can cause complications such as adhesions, fistulae, or failure of the implant. This study analyzed the inflammatory response of human peritoneum explants when exposed to different implant materials including synthetic and biological (cross-linked and non-cross-linked). MATERIALS AND METHODS: Human peritoneum explants (parietal and visceral) were incubated in culture with implants used for abdominal wall reconstruction. Implants included Permacol (biological implant with chemical cross-linking); Biodesign and Strattice (biological implants without chemical cross-linking); Prolene (synthetic nonabsorbable); and Vicryl (synthetic absorbable). Control peritoneum samples were incubated without implant. Cytokine concentrations and corresponding gene expression were measured by enzyme-linked immunosorbent assay and quantitative polymerase chain reaction, respectively. Further evaluation included assessment of tissue viability and implant-cytokine adsorption. RESULTS: Incubation of human peritoneal explants with Biodesign or Strattice was associated with a significant reduction in interleukin-6, interleukin-1ß, and tumour necrosis factor alpha protein and gene expression compared with control. These could not be explained by reduced cell viability or implant-cytokine adsorption. Incubation of explants in Biodesign-conditioned media displayed a similar effect to incubation of explants with Biodesign itself. CONCLUSIONS: Human peritoneal explants cultured with different mesh implant materials show an altered inflammatory cytokine response suggesting a tissue-specific response. Downregulation of key inflammatory cytokines by the peritoneum exposed to non-cross-linked biological implants may be mediated by the release of soluble factors from these implants inhibiting cytokine gene expression. This ex vivo human peritoneal system provides a novel preclinical model to investigate peritoneum-implant interactions.


Assuntos
Peritônio/imunologia , Peritonite/prevenção & controle , Procedimentos de Cirurgia Plástica/efeitos adversos , Próteses e Implantes/efeitos adversos , Telas Cirúrgicas/efeitos adversos , Parede Abdominal/cirurgia , Citocinas/imunologia , Citocinas/metabolismo , Perfilação da Expressão Gênica , Humanos , Hérnia Incisional/cirurgia , Teste de Materiais , Peritônio/patologia , Peritonite/imunologia , Peritonite/patologia , Procedimentos de Cirurgia Plástica/instrumentação , Aderências Teciduais/imunologia , Aderências Teciduais/patologia , Aderências Teciduais/prevenção & controle , Técnicas de Cultura de Tecidos
8.
Clin Exp Allergy ; 49(6): 861-873, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30737857

RESUMO

BACKGROUND: Asthma is a chronic inflammatory condition of the airways and patients sensitized to airborne fungi such as Aspergillus fumigatus have more severe asthma. Thickening of the bronchial subepithelial layer is a contributing factor to asthma severity for which no current treatment exists. Airway epithelium acts as an initial defence barrier to inhaled spores, orchestrating an inflammatory response and contributing to subepithelial fibrosis. OBJECTIVE: We aimed to analyse the production of pro-fibrogenic factors by airway epithelium in response to A fumigatus, in order to propose novel anti-fibrotic strategies for fungal-induced asthma. METHODS: We assessed the induction of key pro-fibrogenic factors, TGF-ß1, TGF-ß2, periostin and endothelin-1, by human airway epithelial cells and in mice exposed to A fumigatus spores or secreted fungal factors. RESULTS: Aspergillus fumigatus specifically caused production of endothelin-1 by epithelial cells in vitro but not any of the other pro-fibrogenic factors assessed. A fumigatus also induced endothelin-1 in murine lungs, associated with extensive inflammation and airway remodelling. Using a selective endothelin-1 receptor antagonist, we demonstrated for the first time that endothelin-1 drives many features of airway remodelling and inflammation elicited by A fumigatus. CONCLUSION: Our findings are consistent with the hypothesis that elevated endothelin-1 levels contribute to subepithelial thickening and highlight this factor as a possible therapeutic target for difficult-to-treat fungal-induced asthma.


Assuntos
Remodelação das Vias Aéreas/imunologia , Aspergilose/imunologia , Aspergillus fumigatus/imunologia , Asma/imunologia , Endotelina-1/imunologia , Mucosa Respiratória/imunologia , Animais , Aspergilose/complicações , Aspergilose/patologia , Asma/etiologia , Asma/patologia , Humanos , Masculino , Camundongos , Mucosa Respiratória/patologia
9.
J Pathol ; 245(4): 491-501, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29774544

RESUMO

Peritoneal fibrosis is a common complication of abdominal and pelvic surgery, and can also be triggered by peritoneal dialysis, resulting in treatment failure. In these settings, fibrosis is driven by activated myofibroblasts that are considered to be partly derived by mesothelial-to-mesenchymal transition (MMT). We hypothesized that, if the molecular signature of MMT could be better defined, these insights could be exploited to block this pathological cellular transition. Rat peritoneal mesothelial cells were purified by the use of an antibody against HBME1, a protein present on mesothelial cell microvilli, and streptavidin nanobead technology. After exposure of sorted cells to a well-known mediator of MMT, transforming growth factor (TGF)-ß1, RNA sequencing was undertaken to define the transcriptomes of mesothelial cells before and during early-phase MMT. MMT was associated with dysregulation of transcripts encoding molecules involved in insulin-like growth factor (IGF) and bone morphogenetic protein (BMP) signalling. The application of either recombinant BMP4 or IGF-binding protein 4 (IGFBP4) ameliorated TGF-ß1-induced MMT in culture, as judged from the retention of epithelial morphological and molecular phenotypes, and reduced migration. Furthermore, peritoneal tissue from peritoneal dialysis patients showed less prominent immunostaining than control tissue for IGFBP4 and BMP4 on the peritoneal surface. In a mouse model of TGF-ß1-induced peritoneal thickening, BMP4 immunostaining on the peritoneal surface was attenuated as compared with healthy controls. Finally, genetic lineage tracing of mesothelial cells was used in mice with peritoneal injury. In this model, administration of BMP4 ameliorated the injury-induced shape change and migration of mesothelial cells. Our findings demonstrate a distinctive MMT signature, and highlight the therapeutic potential for BMP4, and possibly IGFBP4, to reduce MMT. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/genética , Perfilação da Expressão Gênica/métodos , Análise de Sequência com Séries de Oligonucleotídeos , Fibrose Peritoneal/genética , Peritônio/metabolismo , Transcriptoma , Animais , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 4/metabolismo , Movimento Celular , Forma Celular , Células Cultivadas , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Humanos , Proteína 4 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 4 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/genética , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Camundongos Endogâmicos C57BL , Fibrose Peritoneal/metabolismo , Fibrose Peritoneal/patologia , Peritônio/efeitos dos fármacos , Peritônio/patologia , Ratos Wistar , Fator de Crescimento Transformador beta1/farmacologia , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
10.
Front Pharmacol ; 6: 113, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26106328

RESUMO

Mesothelial cells are fundamental to the maintenance of serosal integrity and homeostasis and play a critical role in normal serosal repair following injury. However, when normal repair mechanisms breakdown, mesothelial cells take on a profibrotic role, secreting inflammatory, and profibrotic mediators, differentiating and migrating into the injured tissues where they contribute to fibrogenesis. The development of new molecular and cell tracking techniques has made it possible to examine the origin of fibrotic cells within damaged tissues and to elucidate the roles they play in inflammation and fibrosis. In addition to secreting proinflammatory mediators and contributing to both coagulation and fibrinolysis, mesothelial cells undergo mesothelial-to-mesenchymal transition, a process analogous to epithelial-to-mesenchymal transition, and become fibrogenic cells. Fibrogenic mesothelial cells have now been identified in tissues where they have not previously been thought to occur, such as within the parenchyma of the fibrotic lung. These findings show a direct role for mesothelial cells in fibrogenesis and open therapeutic strategies to prevent or reverse the fibrotic process.

11.
Front Physiol ; 5: 470, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25601836

RESUMO

Encapsulating peritoneal sclerosis (EPS) is a devastating but, fortunately, rare complication of long-term peritoneal dialysis. The disease is associated with extensive thickening and fibrosis of the peritoneum resulting in the formation of a fibrous cocoon encapsulating the bowel leading to intestinal obstruction. The incidence of EPS ranges between 0.7 and 3.3% and increases with duration of peritoneal dialysis therapy. Dialysis fluid is hyperosmotic, hyperglycemic, and acidic causing chronic injury and inflammation in the peritoneum with loss of mesothelium and extensive tissue fibrosis. The pathogenesis of EPS, however, still remains uncertain, although a widely accepted hypothesis is the "two-hit theory," where, the first hit is chronic peritoneal membrane injury from long standing peritoneal dialysis followed by a second hit such as an episode of peritonitis, genetic predisposition and/or acute cessation of peritoneal dialysis, leading to EPS. Recently, EPS has been reported in patients shortly after transplantation suggesting that this procedure may also act as a possible second insult. The process of epithelial-mesenchymal transition of mesothelial cells is proposed to play a central role in the development of peritoneal sclerosis, a common characteristic of patients on dialysis, however, its importance in EPS is less clear. There is no established treatment for EPS although evidence from small case studies suggests that corticosteroids and tamoxifen may be beneficial. Nutritional support is essential and surgical intervention (peritonectomy and enterolysis) is recommended in later stages to relieve bowel obstruction.

12.
Fibrogenesis Tissue Repair ; 6(1): 18, 2013 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-24294831

RESUMO

In humans, a number of genetic factors have been linked to the development of fibrosis in a variety of different organs. Seeking a wider understanding of this observation in man is ethically important. There is mounting evidence suggesting that inbred mouse strains with different genetic backgrounds demonstrate variable susceptibility to a fibrotic injury. We performed a systematic review of the literature describing strain and organ specific response to injury in order to determine whether genetic susceptibility plays a role in fibrogenesis. Data were collected from studies that were deemed eligible for analysis based on set inclusion criteria, and findings were assessed in relation to strain of mouse, type of injury and organ of investigation. A total of 44 studies were included covering 21 mouse strains and focusing on fibrosis in the lung, liver, kidney, intestine and heart. There is evidence that mouse strain differences influence susceptibility to fibrosis and this appears to be organ specific. For instance, C57BL/6J mice are resistant to hepatic, renal and cardiac fibrosis but susceptible to pulmonary and intestinal fibrosis. However, BALB/c mice are resistant to pulmonary fibrosis but susceptible to hepatic fibrosis. Few studies have assessed the effect of the same injury stimulus in different organ systems using the same strains of mouse. Such mouse strain studies may prove useful in elucidating the genetic as well as epigenetic factors in humans that could help determine why some people are more susceptible to the development of certain organ specific fibrosis than others.

13.
Exp Lung Res ; 39(1): 39-47, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23249391

RESUMO

INTRODUCTION: Mucus hypersecretion is a major contributor to asthma pathology and occurs as part of a spectrum of structural changes termed airway wall remodeling. Transforming growth factor (TGF)-ß is proposed to play a key role in regulating airway matrix remodeling although less is known about the specific action of TGF-ß isoforms in regulating mucus production. METHODS: Primary human bronchial epithelial (HBE) cells cultured at air-liquid interface were treated with exogenous TGF-ß(1), TGF-ß(2), and/or a Th2 cytokine, interleukin (IL)-13. Expression and production of respiratory mucins, MUC5AC and MUC5B, were analyzed by real-time PCR, agarose gel electrophoresis, and western blotting. A murine-transformed Clara cell line (mtCC1-2) transfected with a luciferase reporter driven by the Muc5ac promoter containing Smad4 site-mutated cis sequences was used to determine whether exogenous TGF-ß(2) affects Muc5ac promoter function. RESULTS: Surprisingly, TGF-ß(1) showed no measurable effect on MUC5AC or MUC5B production by HBE cells whereas TGF-ß(2) caused a decrease in both MUC5AC and MUC5B mRNA and protein. Dual treatment with TGF-ß(2) and IL-13 partially attenuated the increase in mucin production found with IL-13 alone. This effect was confirmed by using mtCC1-2 cells where addition of TGF-ß(2) reduced the ability of IL-13/EGF to induce Muc5ac promoter expression in wild-type cells; however, this decrease was absent in mutant promoter-transfected cells. DISCUSSION AND CONCLUSION: Findings suggest that normal regulation of MUC5AC and MUC5B production by HBE cells is TGF-ß isoform-specific and that TGF-ß(2) downregulates both MUC5AC and MUC5B. Furthermore, TGF-ß(2) controls baseline and IL-13-driven Muc5ac promoter function in murine Clara cells via an endogenous Smad4 recognition motif.


Assuntos
Interleucina-13/farmacologia , Pulmão/efeitos dos fármacos , Mucina-5AC/metabolismo , Mucina-5B/metabolismo , Mucosa Respiratória/efeitos dos fármacos , Fator de Crescimento Transformador beta2/farmacologia , Animais , Linhagem Celular Transformada , Células Cultivadas , Expressão Gênica/efeitos dos fármacos , Humanos , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Mucina-5AC/genética , Mucina-5B/genética , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Transfecção
14.
Fungal Biol ; 116(9): 1003-12, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22954343

RESUMO

The ubiquitous filamentous fungus Aspergillus fumigatus secretes a number of allergens with protease activity and has been linked to a variety of allergic conditions such as Severe Asthma with Fungal Sensitization (SAFS) and Allergic Bronchopulmonary Aspergillosis (ABPA). However, it is unclear which allergen proteases are being secreted during fungal invasion and whether the local biological environment regulates their expression. Understanding the dynamic expression of allergen proteases during growth of A. fumigatus may lead to further characterisation of the pathogenesis of these disorders as well as improved standardisation in the commercial production of these allergens. Secretion of proteases during germination and early growth of A. fumigatus was investigated in response to various complex protein sources (pig lung homogenate, mucin or casein). Protease inhibitor studies demonstrated that A. fumigatus (AF293 strain) secretes predominately serine proteases during growth in pig lung based medium and mainly metalloproteases during growth in casein based medium but suppressed protease secretion in unmodified Vogel's minimal medium and secreted both types in mucin based medium. Analysis of gene transcription and protein identification by mass spectrometry showed that the matrix metalloprotease, Mep/Asp f 5 and the serine protease, Alp1/Asp f 13, were upregulated and secreted during growth in pig lung medium, whereas Alp1 was predominately expressed and secreted in mucin based medium. In casein medium, the matrix metalloprotease, Lap1, was also upregulated and secreted in addition to Mep and Alp1. These findings suggest that A. fumigatus is able to detect different complex proteins available as substrates in its environment and regulate protease secretion accordingly. There is a requirement for the standardisation of A. fumigatus allergen extracts used both in clinical diagnosis of A. fumigatus allergy and in research studies.


Assuntos
Aspergilose/microbiologia , Aspergillus fumigatus/enzimologia , Meios de Cultura/metabolismo , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Peptídeo Hidrolases/metabolismo , Proteínas/metabolismo , Animais , Aspergilose/metabolismo , Aspergillus fumigatus/genética , Aspergillus fumigatus/crescimento & desenvolvimento , Aspergillus fumigatus/metabolismo , Meios de Cultura/química , Proteínas Fúngicas/genética , Humanos , Peptídeo Hidrolases/genética , Transporte Proteico , Suínos
15.
J Cell Mol Med ; 15(10): 2095-105, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21070599

RESUMO

Serosal pathologies including malignant mesothelioma (MM) can show features of osseous and/or cartilaginous differentiation although the mechanism for its formation is unknown. Mesothelial cells have the capacity to differentiate into cells with myofibroblast, smooth muscle and endothelial cell characteristics. Whether they can differentiate into other cell types is unclear. This study tests the hypothesis that mesothelial cells can differentiate into cell lineages of the embryonic mesoderm including osteoblasts and adipocytes. To examine this, a functional assay of bone formation and an adipogenic assay were performed in vitro with primary rat and human mesothelial cells maintained in osteogenic or adipogenic medium (AM) for 0-26 days. Mesothelial cells expressed increasing levels of alkaline phosphatase, an early marker of the osteoblast phenotype, and formed mineralized bone-like nodules. Mesothelial cells also accumulated lipid indicative of a mature adipocyte phenotype when cultured in AM. All cells expressed several key osteoblast and adipocyte markers, including osteoblast-specific runt-related transcription factor 2, and demonstrated changes in mRNA expression consistent with epithelial-to-mesenchymal transition. In conclusion, these studies confirm that mesothelial cells have the capacity to differentiate into osteoblast- and adipocyte-like cells, providing definitive evidence of their multipotential nature. These data strongly support mesothelial cell differentiation as the potential source of different tissue types in MM tumours and other serosal pathologies, and add support for the use of mesothelial cells in regenerative therapies.


Assuntos
Adipócitos/citologia , Epitélio/crescimento & desenvolvimento , Mesoderma/citologia , Mesotelioma/metabolismo , Osteoblastos/citologia , Adipogenia/genética , Idoso , Idoso de 80 Anos ou mais , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Animais , Biomarcadores Tumorais/metabolismo , Diferenciação Celular , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Expressão Gênica , Humanos , Metabolismo dos Lipídeos , Mesoderma/embriologia , Pessoa de Meia-Idade , Osteogênese/genética , Ratos
16.
FEBS J ; 277(9): 2015-21, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20412055

RESUMO

MicroRNAs (miRNAs) are small, noncoding RNAs of 18-25 nucleotides that are generally believed to either block the translation or induce the degradation of target mRNA. miRNAs have been shown to play fundamental roles in diverse biological and pathological processes, including cell proliferation, differentiation, apoptosis and carcinogenesis. Fibrosis results from an imbalance in the turnover of extracellular matrix molecules and is a highly debilitating process that can eventually lead to organ dysfunction. A growing body of evidence suggests that miRNAs participate in the fibrotic process in a number of organs including the heart, kidney, liver and lung. In this review, we summarize our current understanding of the role of miRNAs in the development of tissue fibrosis and their potential as novel drug targets.


Assuntos
MicroRNAs/genética , Animais , Modelos Animais de Doenças , Desenho de Fármacos , Fibrose/tratamento farmacológico , Fibrose/genética , Humanos , MicroRNAs/uso terapêutico
17.
PLoS One ; 4(6): e5889, 2009 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-19521514

RESUMO

BACKGROUND: Asthma is a common disease characterised by reversible airflow obstruction, bronchial hyperresponsiveness and chronic inflammation, which is commonly treated using corticosteroids such as budesonide. MicroRNAs (miRNAs) are a recently identified family of non-protein encoding genes that regulate protein translation by a mechanism entitled RNA interference. Previous studies have shown lung-specific miRNA expression profiles, although their importance in regulating gene expression is unresolved. We determined whether miRNA expression was differentially expressed in mild asthma and the effect of corticosteroid treatment. METHODOLOGY/PRINCIPAL FINDINGS: We have examined changes in miRNA using a highly sensitive RT-PCR based approach to measure the expression of 227 miRNAs in airway biopsies obtained from normal and mild asthmatic patients. We have also determined whether the anti-inflammatory action of corticosteroids are mediated through miRNAs by determining the profile of miRNA expression in mild asthmatics, before and following 1 month twice daily treatment with inhaled budesonide. Furthermore, we have analysed the expression of miRNAs from individual cell populations from the airway and lung. We found no significant difference in the expression of 227 miRNAs in the airway biopsies obtained from normal and mild asthmatic patients. In addition, despite improved lung function, we found no significant difference in the miRNA expression following one month treatment with the corticosteroid, budesonide. However, analysis of bronchial and alveolar epithelial cells, airway smooth muscle cells, alveolar macrophages and lung fibroblasts demonstrate a miRNA expression profile that is specific to individual cell types and demonstrates the complex cellular heterogeneity within whole tissue samples. CONCLUSIONS: Changes in miRNA expression do not appear to be involved in the development of a mild asthmatic phenotype or in the anti-inflammatory action of the corticosteroid budesonide.


Assuntos
Corticosteroides/uso terapêutico , Asma/tratamento farmacológico , Brônquios/metabolismo , Perfilação da Expressão Gênica , Pulmão/metabolismo , MicroRNAs/metabolismo , Alvéolos Pulmonares/metabolismo , Adolescente , Adulto , Biópsia , Brônquios/efeitos dos fármacos , Budesonida/uso terapêutico , Feminino , Humanos , Inflamação/tratamento farmacológico , Pulmão/efeitos dos fármacos , Masculino , Alvéolos Pulmonares/efeitos dos fármacos
18.
J Invest Dermatol ; 128(5): 1311-8, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18037901

RESUMO

Hair follicles have been observed to provide a major cellular contribution to epidermal healing, with emigration of stem-derived cells from the follicles aiding in wound reepithelialization. However, the functional requirements for this hair follicle input are unknown. Here we have characterized the keratinocyte stem cell status of mutant mice that lack all hair follicle development on their tail, and analyzed the consequent alterations in epidermal wound healing rate and mechanisms. In analyzing stem cell behavior in embryonic skin we found that clonogenic keratinocytes are relatively frequent in the ectoderm prior to hair follicle formation. However, their frequency in the interfollicular epidermis drops sharply by birth, at which time the majority of stem cells are present within the hair follicles. We find that in the absence of hair follicles cutaneous wounds heal with an acute delay in reepithelialization. This delay is followed by expansion of the region of activated epidermis, beyond that seen in normal haired skin, followed by appropriate wound closure. JID Journal Club article: for questions, answers, and open discussion about this article please go to http://network.nature.com/group/jidclub.


Assuntos
Epiderme/fisiologia , Queratinócitos/fisiologia , Cicatrização/fisiologia , Células 3T3 , Animais , Proteína de Domínio de Morte Associada a Edar/genética , Células Epidérmicas , Epiderme/embriologia , Feminino , Folículo Piloso/citologia , Queratinócitos/citologia , Masculino , Camundongos , Camundongos Mutantes , Gravidez , Pele , Células-Tronco/citologia
19.
Dis Colon Rectum ; 49(12): 1885-92, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17096176

RESUMO

PURPOSE: This study was designed to investigate the vascular structure and angiogenic activity of human peritoneal adhesions. METHODS: Adhesions were collected from patients undergoing laparotomy (n=32). Histologic features were documented and the distribution of mature and immature vascular markers were determined by immunolocalization and quantified by image analysis. The three-dimensional organization of blood vessels was investigated by confocal microscopy. Expression of vascular endothelial growth factor A, its receptor flk-1, and proliferating cell nuclear antigen were assessed by immunohistochemistry as indicators of angiogenic activity. RESULTS: Adhesions were found to be vascularized structures comprising bundles of collagen, interspersed with varying amounts of adipose tissue. Functional blood vessels expressed recognized vascular markers (vWF, CD34, alpha-SMA, and CD105) and formed a branching network similar to that of the peritoneum. Those adhesions expressing vascular endothelial growth factor A and its receptor showed significantly higher numbers of immature vessels as defined by expression of CD105. Omental adhesions (n=16) contained significantly more adipose tissue (P<0.05) and displayed a higher microvessel density (P<0.01) but lower cellularity (P<0.05) compared with nonomental adhesions (n=16). CONCLUSIONS: All adhesions contained functional blood vessels and most showed evidence of cell proliferation. The presence of vascular endothelial growth factor A and its receptor in human adhesions suggests ongoing angiogenic activity. This study demonstrates that adhesions are vascular structures with evidence of tissue remodeling and suggests potential for new prevention strategies involving antiangiogenic therapies.


Assuntos
Neovascularização Fisiológica , Peritônio/irrigação sanguínea , Peritônio/metabolismo , Aderências Teciduais/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Fosfatase Alcalina/metabolismo , Antígenos CD/metabolismo , Biomarcadores/metabolismo , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patologia , Proliferação de Células , Colágeno/metabolismo , Endoglina , Feminino , Humanos , Imuno-Histoquímica , Masculino , Microscopia Confocal , Pessoa de Meia-Idade , Antígeno Nuclear de Célula em Proliferação/metabolismo , Receptores de Superfície Celular/metabolismo , Aderências Teciduais/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
20.
Am J Pathol ; 167(4): 1005-19, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16192636

RESUMO

Transforming growth factor-beta (TGF-beta), a multifunctional growth factor, represents three mammalian isoforms, TGF-beta1, TGF-beta2, and TGF-beta3. In cutaneous wound healing, combined neutralization of TGF-beta1 and -beta2 or addition of TGF-beta3 reduces scar formation. Here, we investigated whether experimental manipulation of TGF-beta isoforms reduced adhesion formation after injury to the peritoneum. Adhesions were produced in mice by surgical abrasion of adjacent serosa followed by close apposition. In the first part of this study, a detailed analysis of TGF-beta isoform distribution was performed through immunolocalization. TGF-beta isoforms clearly showed a unique temporal and spatial pattern of expression after peritoneal wounding. Based on this pharmacokinetic data, we next administered neutralizing antibodies to TGF-beta1 and -beta2 or exogenous TGF-beta3 peptide by local application and intraperitoneal injection at various times before and after surgery. At day 7 after surgery, addition of neutralizing antibodies to both TGF-beta1 and -beta2 significantly reduced the number and size of adhesions (P < 0.05) compared with the vehicle control. By contrast, exogenous addition of TGF-beta3 either had no effect or increased adhesion formation compared to the vehicle control. In conclusion, these results show that by blocking both TGF-beta1 and TGF-beta2 using neutralizing antibodies, it is possible to prevent abdominal adhesion formation.


Assuntos
Modelos Anatômicos , Doenças Peritoneais/etiologia , Aderências Teciduais/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Animais , Anticorpos/farmacologia , Líquido Ascítico/citologia , Líquido Ascítico/imunologia , Ceco/citologia , Ceco/imunologia , Imuno-Histoquímica , Cinética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Testes de Neutralização , Doenças Peritoneais/metabolismo , Lavagem Peritoneal , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/farmacologia , Distribuição Aleatória , Aderências Teciduais/etiologia , Distribuição Tecidual , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/imunologia , Fator de Crescimento Transformador beta/farmacocinética , Cicatrização/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...